

Résumé Semaine 12

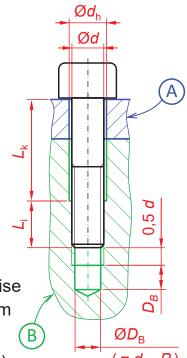
Assemblages boulonnés II

Dr. S. Soubielle

S. Soubielle

Résumé semaine 12

ME-101 / ME-106 - Construction Mécanique I


Règles de construction (synthèse)

Préférer le trou taraudé à l'écrou

- \rightarrow Trou lisse $d_{\rm h}$ sur la première pièce
- → Diamètre de l'avant-trou $D_{\rm B} = d P$
- → Prof. avant-trou prof. taraudage ≈ 1× D_B
- → Espacement vis / fond de taraudage ≈ 0,5 d

Dimensionnement de la vis

- Diamètre nominal d et classe de qualité
 - → Dépend de l'intensité des efforts extérieurs
- Profondeur d'implantation L_i
 - \rightarrow Détermine la contrainte τ dans les filets en prise
 - \rightarrow = 1.5 × d si acier / = 2 × d si fonte ou aluminium
- Longueur de raideur minimale $(L_k)_{min}$
 - \rightarrow Détermine la rigidité de la vis k_{vis} (= A_s . E / L_k)
 - \Rightarrow = 1 × d si F_{ext} constante / 3 × d si F_{ext} variable / 5 × d si F_{ext} vibratoire

Serrage des vis et des écrous

Serrage au couple

Nécessaire pour contrôler
 la force de traction de la vis

- Couple de serrage max. dépend de la classe de qualité de la vis

Références principales pour la visserie

Wis t cy 6pc ISO 4762

Vis t co 6pc ISO 10642

Vis st 6pc ISO 4026

✓ Vis t 6p ISO 4014 / 4017

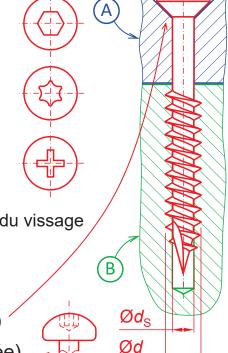
Rdl ISO 7089

Rdl DIN 127

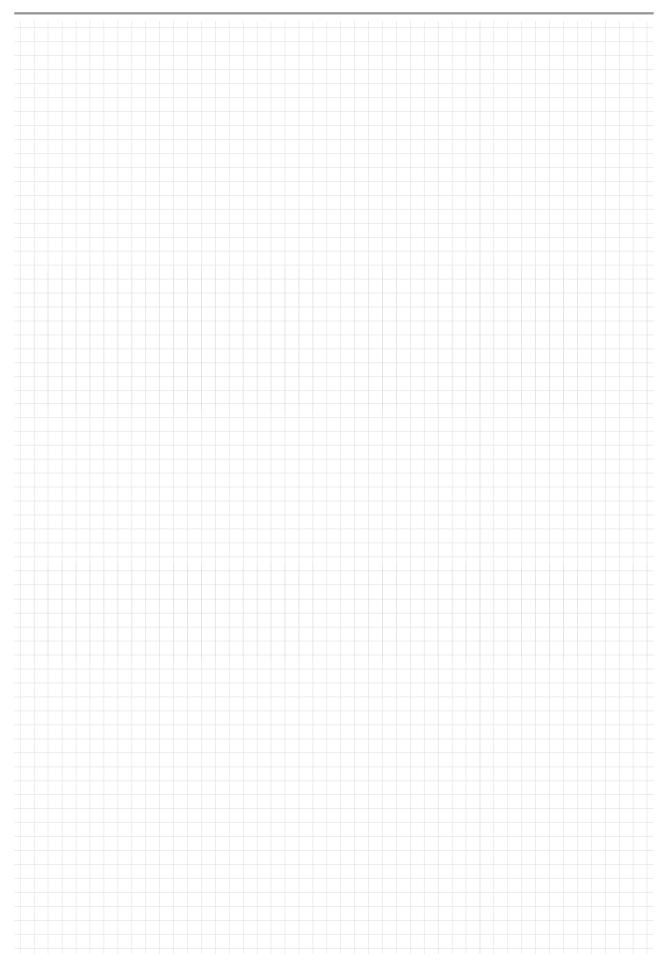
Clés de serrage

Empreinte 6pc →

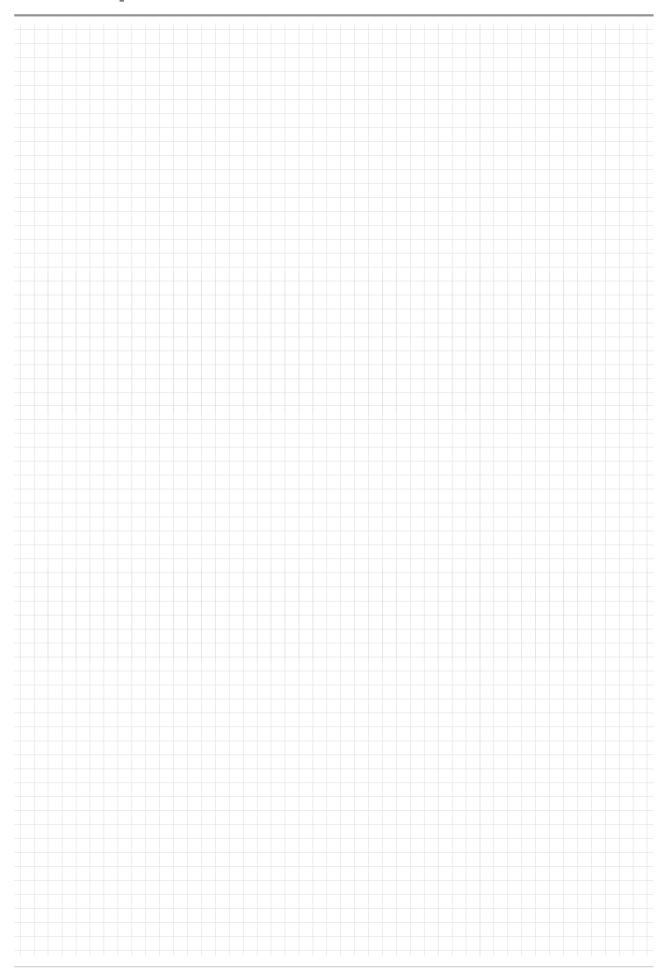
S. Soubielle 3


Résumé semaine 12

ME-101 / ME-106 — Construction Mécanique I


Et si vissage dans bois, plastique, tôles?

Principes généraux


- Vis auto-taraudeuse
 - \rightarrow Seul un perçage à d_S (diamètre de tige) est fait dans les pièces à assembler
- Matériaux mous et peu résistants
 - → Dents hautes pour une meilleure prise
- Empreinte de clé
 - → Prévue pour exercer un effort axial lors du vissage
 - → Six-pans creux, torx, cruciforme, etc.
- Face d'appui vis / pièce « A »
 - Bois → Conique (la plupart du temps)
 - Plastique & tôle → Plate (tête bombée)

Quiz TurningPoint (me101)

Notes personnelles

Solutions d'assemblage statique l

Interfaces usuelles & Composants mécaniques normalisés

Dr. S. Soubielle

S. Soubielle

Solutions d'assemblage statique I

ME-101 / ME-106 - Construction Mécanique I

Dans ce cours, nous allons...

... Caractériser le besoin d'assemblage statique

- ... Pourquoi assembler en liaison totale des pièces entre elles ?
- ... Quels types d'interfaces sont les plus couramment utilisées ?

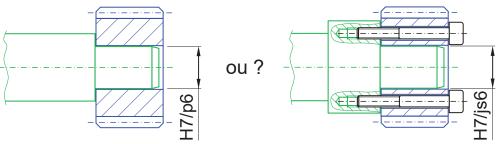
... Définir les composants standardisés usuels

- ... Goupilles cylindriques et goupilles élastiques
- ... Clavettes
- ... Anneaux élastiques et segments d'arrêt

... Pour chaque type de composant, nous préciserons

- ... Les variantes et caractéristiques
- ... Les fonctions techniques et règles d'intégration
- ... Les dimensions normales (selon les normes)

H7/h6


Assemblage statique : pour quoi faire ?

Fabrication

- Pour permettre la fabrication (si impossible en une seule pièce)
- Pour réduire les coûts
- Si besoin de matériaux différents

Exigences à l'assemblage

- Niveau de précision de positionnement entre pièces ?
- Intensité des efforts qui transitent ?

S. Soubielle 3

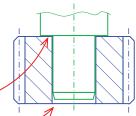
Solutions d'assemblage statique I

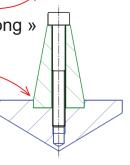
ME-101 / ME-106 - Construction Mécanique I

Assemblage statique : solutions usuelles

- Interfaces usuelles d'assemblage (rappel)
 - Plan / plan
 - Cylindre / cylindre

Combinaisons usuelles d'interfaces

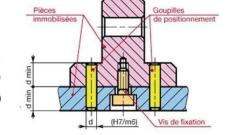

- Plan / plan + cylindre / cylindre
 - Apparition d'un « épaulement » sur l'arbre
 - Obtention d'un « centrage court » ou d'un « centrage long »



Les derniers DDL sont bloqués par obstacle et/ou par frottement statique

→ Goupilles, clavettes, anneaux élastiques, segments d'arrêt

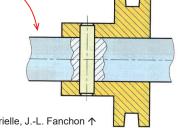
Goupilles (1/3)



Fonctions techniques

Mise en position plan sur plan

- Ajustement incertain sur le support / avec jeu sur la 2ème pièce



• En général combiné à un AB p. 306, fig. 306/4

Liaison totale arbre-moyeu (avec maintien en position)

 La goupille traverse l'arbre et le moyeu (par ex. radialement)

 Ajustement incertain ou serré sur les 2 pièces (dépend de l'intensité des efforts extérieurs)

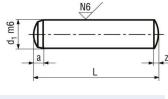
© Guide des sciences et technologies industrielle, J.-L. Fanchon ↑

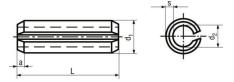
5 S. Soubielle

Solutions d'assemblage statique I

Goupilles (2/3)

Goupille cylindrique ISO 8734


- Acier haute résistance trempé + rectifié
- − Finition sur le \emptyset → h6 ou m6 / Ra 0,8
- Tolérances de montage (pour métaux, avec Ra 1,6 dans le trou)


<u>p</u>	
a	L
h.c	· C

	110	1110
Avec jeu	H7	F7
Incertain	JS7, N7	H7
Serré	P7	JS7

Goupille élastique à fente droite

- Chassée (à la presse) dans l'alésage
- Type d'exécution
 - Faibles charges → « légère » ISO 13337
 - Fortes charges → « lourde » ISO 8752
- Tolérances de montage : H12 / Ra 6,3

Goupilles (3/3)

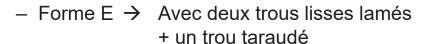
- Dimensions normales (en mm) →
- Longueurs normales L (en mm) ↓

4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 120, 140, 160, 180, 200

Diamètre		Longueur <i>L</i>	
nominal d	ISO 8734	ISO 13337	ISO 8752
1	3 10	-	4 20
1,2		-	-
1,5	4 16	-	4 20
2	5 20	4 30	4 30
2,5	6 24	4 30	4 30
3	8 30	4 40	4 40
3,5	-	4 40	4 40
4	10 40	4 50	4 40
4,5	-	6 50	5 50
5	12 50	6 80	5 80
6	14 60	10 100	10 100
8	16 80	10 120	10 120
10	22 100	10 160	10 160

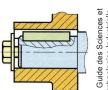
S. Soubielle 7

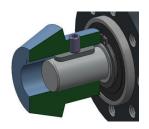
Solutions d'assemblage statique I


ME-101 / ME-106 - Construction Mécanique I

Clavettes parallèles DIN 6885-1 (1/4)

Variantes de formes principales





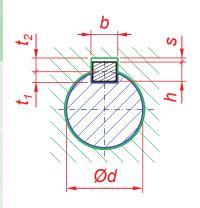
(= Liaison arbre-moyeu en rotation)

© Guide des Sciences et Technologies Industrielle, J.-L. Fanchon

←

4

- Rainure oblongue dans l'arbre (fraisage)
- Rainure débouchante dans l'alésage



Clavettes parallèles DIN 6885-1 (2/4)

Dimensions de la clavette, du logement, et de la rainure

Diamètre de l'arbre		Clavette		Plage de	Profondeur de la rainure					
		d			longueurs	Arl	ore	Moyeu		
	au-des- sus de	jusqu'à	ь	h	L	t ₁ ²)	Ecarts	t ₂ ²)	Ecarts	
	6 8 10	8 10 12	2 h9 3 h9 4 h9	2 h9 3 h9 4 h9	6 20 6 36 8 45	1,2 1,8 2,5	+0,1	1 1,4 1,8	+0,1	
	12 17 22	17 22 30	5 h9 6 h9 8 h9	5 h9 6 h9 7 h11	10 56 14 70 18 90	3 3,5 4		2,3 2,8 3,3	3	
	30 38 44	38 44 50	10 h9 12 h9 14 h9	8 h9 8 h9 9 h11	22 110 28 140 36 160	5 5 5,5		3,3 3,3 3,8	+0,2	
	50 58 65	58 65 75	16 h9 18 h9 20 h9	10 h11 11 h11 12 h11	45 180 50 200 56 220	6 7 7,5	+0,2 0	4,3 4,4 4,9		
	75 85 95	85 95 110	22 h9 25 h9 28 h9	14 h11 14 h11 16 h11	63 250 70 280 80 320	9 9 10		5,4 5,4 6,4		

← © Extrait de Normes 2022, p. 311, Tableau 311/1, partiel

Liste des longueurs normales L (en mm)

6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280, 320

S. Soubielle 9

Solutions d'assemblage statique I

ME-101 / ME-106 — Construction Mécanique I

Clavettes parallèles DIN 6885-1 (3/4)

Longueur de la rainure dans l'arbre

© Extrait de Normes 2022, p. 311, Tableau 311/2

Plage de long	ueurs	6 28	32 80	90 320
Ecarts	Longueur de la rainure	+0,2 / 0	+0,3 / 0	+0,5 / 0
	Longueur de la clavette	0 / -0,2	0 / -0,3	0 / -0,5

Largeur de la rainure dans l'arbre et le moyeu

Largeur de rain	ure b	clavetage libre	clavetage léger	clavetage serré
Tolérance	Arbre	Н9	N9	P9
	Alésage	D10	159	P9

Quel clavetage choisir ?

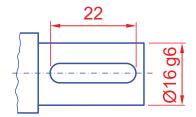
- Clavetage libre

Jeu angulaire arbre / moyeu

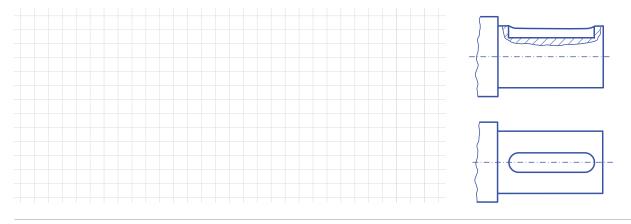
→ Adapté aux faibles charges (sinon... ↑)

Clavetage serré

- → Adapté aux fortes charges
- → Mais démontage compliqué →→→→→
- → Privilégier forme E (démontage avec vis)


© Extrait de Normes 2022, p. 311, Tableau 311/3

Clavettes parallèles DIN 6885-1 (4/4)



- Exercice d'application

On considère la portée Ø16 g6 d'un arbre de transmission, équipé d'une clavette DIN 6885-A de longueur nominale 22 mm.

Sachant que le clavetage est léger, effectuer la cotation de la rainure de clavette dans l'arbre au moyen des deux vues ci-dessous.

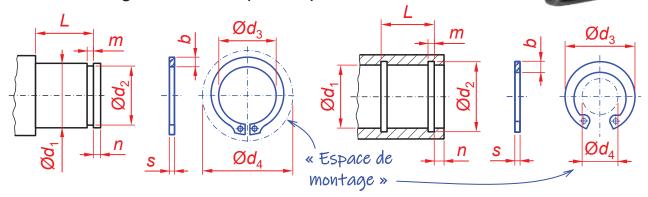
S. Soubielle 11

Solutions d'assemblage statique I

ME-101 / ME-106 - Construction Mécanique I

Anneaux élastiques (« circlips ») (1/4)

Variantes de forme


- Pour arbres DIN 471
- Pour alésages DIN 472

Fonction technique et montage

- Fonction technique = Arrêt axial
- Montage axial, avec pince spéciale

Anneaux élastiques (« circlips ») (2/4)

Pour arbres (en mm) →	Diam l'a
$\frac{1}{\sqrt{2}}$ 1	
© Extrait de Normes 2022, Tableau 315/1 →	1

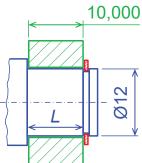
Cotes nominales			Dime	ensions du	circlip	Dimensions de la rainure			re	Limite de charge F _N de		
Diamètre de l'arbre	Epaisse	ur du circlip								la rainure		
d_1	5		b	<i>d</i> ₃	d ₄		d ₂	m ²)	n	kN		
		Écart admissible	*				Classes de tolérances	H13	min.	max		
12 14 15	1		1,8 2,1 2,2	11 12,9 13,8	19 21,4 22,6	11,5 13,4 14,3	0	1,1	0,8 0,9 1,1	1,53 2,15 2,66		
16 17			2,2 2,3	14,7 15,7	23,8 25	15,2 16,2	-0,11 (h11)		1,2	3,26 3,46		
18 20 22	1,2		2,4 2,6 2,8	16,5 18,5 20,5	26,2 28,4 30,8	17 19 21	0 -0,13 (h11)	(h11) 1,3	1,3	1,3	1,5	4,58 5,06 5,65
25		0 -0,06	3	23,2	34,2	23,9	0		1,7	7,05		
28 30			3,2 3,5	25,9 27,9	37,9 40,5	26,6 28,6	-0,21 (h12)	1.0	2,1	10 10,73		
32 35	1,5		3,6 3,9	29,6 32,2	43 46,8	30,3 33		1,6	2,6	13,85 17,8		
36			4	33,2	47,8	34	0 -0,25	1,85		3	18,33	
40 45	1,75		4,4 4,7	36,5 41,5	52,6 59,1	37,5 42,5	(h12)		3,8	25,3 28,6		
50 55 60	2		5,1 5,4 5,8	45,8 50,8 55,8	64,5 70,2 75,6	47 52 57		2,15		38 42 46		
65 70		0 -0,07	6,3 6,6	60,8 65,5	81,4 87	62 67	0 -0,3 (h12)	2,65	4,5	49,8 53,8		
75 80	2,5		7 7,4	70,5 74,5	92,7 98,1	72 76,5		2,05		57,6 71,6		
85 90		2 0	2 0	0	7,8 8,2	79,5 84,5	103,3 108,5	81,5 86,5	0 -0,54	3,15	5,3	76,2 80,8
95 100	3	-0,08	8,6 9	89,5 94,5	114,8 120,2	91,5 96,5	(h13)	3,15		85,5 90		

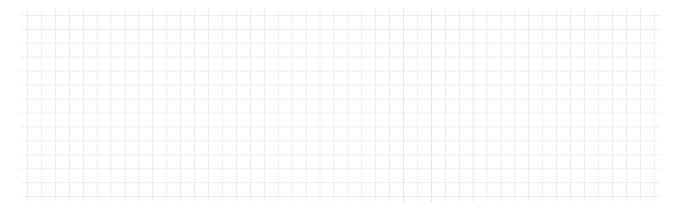
Solutions d'assemblage statique I

ME-101 / ME-106 — Construction Mécanique I

Anneaux élastiques (« circlips ») (3/4)

	Cotes nominates			Dimensions du circup			Dimensions de la rainure				Limite de	
Pour alésages	Diamètre d'alésage d ₁	Epaisso 5	eur du circlip	b	<i>d</i> ₃	d ₄		d ₂	m ²)	п	charge F _N de la rainure kN	
(en mm) →			Écart. admiss.	*				Classes de tolérances	H13	min	max.	
L	28 30 32	1,2		2,9 3 3,2	30,1 32,1 34,4	17,9 19,9 20,6	29,4 31,4 33,7	+0,21/0 (H12)	1,3	2,1 2,1 2,6	10,5 11,3 14,6	
<u>m</u>	35 37	1,5	0 -0.06	3,4 3,6	37,8 39,8	23,6 25,4	37 39	+0,25	1,6	3	18,8 19,8	
	40 42	1.75	0,00	3,9 4,1	43,5 45,5	27,8 29,6	42,5 44,5	(H12)	1.85 3.8	3,8	27 28,4	
	45 47	1,75		4,3 4,4	48,5 50,5	32 33,5	47,5 49,5		1,00	3,8	30,2 31,4	
	50 52			4,6 4,7	54,2 56,2	36,3 37,9	53 55				40,5 42	
n	55 60 62	2		5,4 64,2 44,7 63 5,5 66,2 46,7 65 +0,30	2,15	4,5	44,4 48,3 49,8					
- - <	65 68		0-0,07	5,8 6,1	69,2 72,5	49 51,6	68 71	(H12)	4,3	4,5	51,8 54,5	
$Q \mid \mathcal{O}d_3$	70 72	2,5			6,2 6,4	74,5 76,5	53,6 55,6	73 75		2,65		56,2 58
	75 80			6,6 7	79,5 85,5	58,6 62,1	78 83,5			5,3	60 74,6	
1	85 90	3	0	7,2 7,6	90,5 95,5	66,9 71,9	88,5 93,5	+0,35	3,15		79,5 84	
	95 100		-0,08	8,1 8,4	100,5 105,5	76,5 80,6	98,5 103,5	(H12)	3,13		88,6 93,1	
	110 115			9 9,3	117 122	88,2 93	114 119	+0,54 0 (H13)			117 122	
$S = \emptyset d_4$	120 125	4	0	9,7 10	127 132	96,9 101,9	124 129	10.63	4,15	6	127 132	
© Extrait de Normes 2022,	130 140	4	-0,1	10,2 10,7	137 147	106,9 116,5	134 144	+0,63 0 (H13)	0		138 148	
p. 316, Tableau 316/1 →	145 150			10,9 11,2	152 158	121 124,8	149 155	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7,5	153 191	


Anneaux élastiques (« circlips ») (4/4)



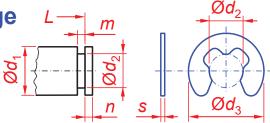
- Exercice d'application

L'anneau ci-contre d'ép. 10,000 mm doit être monté sur un arbre Ø12 avec un jeu axial max. de 0,1 mm.

Quelle valeur de cote « L » (valeur nominale + intervalle de tolérance) doit-on spécifier sur le plan de fabrication de l'arbre?

S. Soubielle 15

Solutions d'assemblage statique I


ME-101 / ME-106 - Construction Mécanique I

Segment d'arrêt DIN 6799

Fonction technique et montage

- Fonction technique = arrêt axial
- Montage radial (sur arbre),
 sans besoin de pince spéciale

 Valable dès arbre de Ø1

•	Dimensions
	normales
	(en mm) →

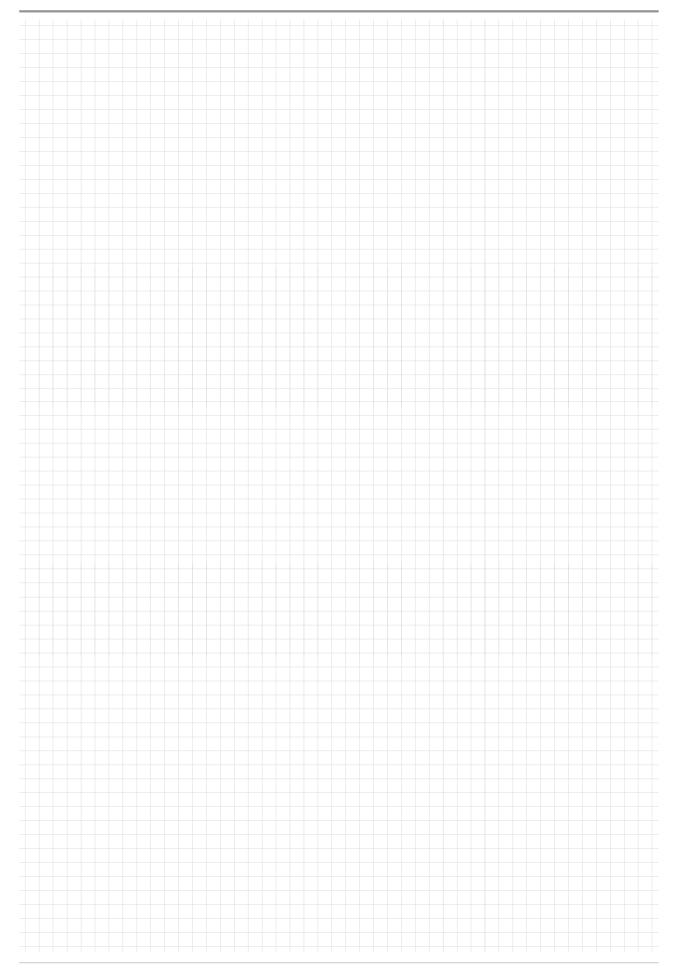
Diamètre de l'arbre Dimensions du segment							Dimensi	Limite de charge F_N de la rainure				
	de	d ₁ à	d ₂ Cote nominale	d ₃ monté	S		d ₂ Ecarts		m ²) Ecarts	n min.	kN	pour d ₁
	1 1,4 2	1,4 2 2,5	0,8 1,2 1,5	2,25 3,25 4,25	0,2 0,3 0,4	0,8 1,2 1,5	0/-0,04 (h11)	0,24 0,34 0,44	+0,04	0,4 0,6 0,8	0,03 0,04 0,07	1,2 1,5 2
	2,5 3	3 4	1,9 2,3	4,8 6,3	0,5 0,6	1,9 2,3	-0,06 (h11)	0,54 0,64		1	0,1 0,15	2,5
	4 5	5 7	3,2 4	7,3 9,3	0,6 0,7	3,2 4	0	0,64 0,74	+0,05	1,2	0,22 0,25	4 5
	6 7 8	8 9 11	5 6 7	11,3 12,3 14,3	0,7 0,7 0,9	5 6 7	-0,075 (h11)	0,74 0,74 0,94		1,2 1,2 1,5	0,9 1,1 1,25	7 8 9
	9	12 14	8 9	16,3 18,8	1 1,1	8 9	0 -0,09 (h11)	1,05 1,15	.0.00	1,8	1,42 1,6	10 11
	11 13 16	15 18 24	10 12 15	20,4 23,4 29,4	1,2 1,3 1,5	10 12 15	0 -0,11 (h11)	1,25 1,35 1,55	+0,08	2 2,5 3	1,7 3,1 7	12 15 20
	20	31	19	37,6	1,75	19	0	1,8		3,5	10	25

© Extrait de Normes 2022, p. 314, Tableau 314/1 →

Références normatives principales

DIN 471	Anneaux d'arrêt pour arbres - Type standard et type robuste
DIN 472	Anneaux d'arrêt pour alésages - Type standard et type robuste
DIN 6885-1	Clavetages - clavettes parallèles - rainures - forme haute
DIN 6799	Bagues de frein (bagues de retenue) pour arbres
ISO 3601-1	Transmissions hydrauliques et pneumatiques — Joints toriques — Partie 1: Diamètres intérieurs, sections, tolérances et codes d'identification dimensionnelle
ISO 3601-2	Transmissions hydrauliques et pneumatiques — Joints toriques — Partie 2: Dimensions des logements pour applications générales
ISO 8015	Spécification géométrique des produits (GPS) — Principes fondamentaux — Concepts, principes et règles
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

S. Soubielle 17


Solutions d'assemblage statique I

ME-101 / ME-106 — Construction Mécanique I

Notes personnelles

Notes personnelles

